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Abstract

In this paper, the mechanism involved in the phenomena of resonance and cancellation in the train-
induced vibrations of railway bridges with elastic bearings is explained using an analytical approach. The
train is modelled as a sequence of moving loads of constant intervals. The vibration shape of the elastically
supported beam is approximated by the combination of a flexural sine mode and a rigid body mode. The
present results indicate that under certain conditions, resonances of much higher peaks can be excited on
elastically supported beams by moving trains at much lower speeds than those on simply supported beams.
The cancellation is a phenomenon more decisive than that of resonance, in that it can suppress the latter
even when the condition of resonance is met. Moreover, the speed for cancellation to occur is generally
independent of the support stiffness. To verify the analytical results presented herein, a field test was
conducted on two adjacent elastically supported bridges in existing railway lines. In the design of railway
bridges, it is important that the phenomenon of resonance not be overlooked, as it is harmful not only to
the riding comfort of passengers, but to the maintenance of railway tracks.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Taiwan is located at one of the most active seismic belts in the Pacific Rim. In order to prevent
the bridge structures from damages or collapse under severe earthquakes, various protective
measures have been adopted by structural engineers. Elastic bearings represent a kind of devices
commonly installed at the supports of the bridge girders for isolating the earthquake forces
transmitted from the ground. While they are effective for isolating the ground-borne seismic
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forces, they can equally prevent the vehicle-induced vibrations from dissipation to the supports
and then to the ground. This is certainly one disadvantage with the use of elastic bearings. For
high speed railway bridges installed with elastic bearings, it is likely that the huge amount of
vibration energy brought by the moving train be accumulated in the bridge, and that the bridge
response be amplified when the train traverses at certain critical speeds. The repetitive occurrence
of amplified vibrations may result in some early fatigue problems, affecting not only the riding
quality of passengers, but also the service life of the track components.
In the past years, numerous researchers have studied the moving load and vehicle–bridge

interaction problems, including Fr"yba [1], Kurihara and Shimogo [2], Yang and co-workers [3–5],
Yau et al. [6], Cheung et al. [7], and Au et al. [8], among others. Due to the regular, repetitive
nature of the wheel loads constituting a train, both the phenomena of resonance and
cancellation may be induced on the bridge by the train moving at high speeds. The resonance
phenomenon relates to the continuous build-up of the free-vibration response on the bridge as
there are more loads passing by. In contrast, the cancellation phenomenon implies that the waves
associated with the free-vibration responses of the bridge generated by the sequential moving
loads cancel out each other. If the resonance condition can be reached by a train within its
operation speeds, then some detrimental effects can be expected on the track system, as well as on
the moving train itself. Such a problem will be aggravated when the factor of elastic bearings is
taken into account.
Previously, rather few research works have been conducted on the dynamic response of

elastically supported beams to moving loads. In the analytical study by Yau et al. [9], envelope
formulas were developed for elastically supported beams with light damping subjected to
moving loads. Recently, Lin [10] investigated the vibrations of railway bridges installed with
elastic bearings, together with measures for vibration reduction. In this study, focus is placed on
the physical interpretation of the mechanism involved in the phenomena of resonance and
cancellation of the dynamic response of elastically supported beams to moving loads. The key
factors affecting the dynamic response of bridges will be investigated, with comments made
concerning the suitability of using elastic bearings as aseismic devices for railway bridges. Also
presented are the results obtained from a field test that serve to verify the theory presented in this
paper.

2. Formulation of the theory

The bridge model adopted is the one shown in Fig. 1, in which a beam supported by two
identical elastic bearings is considered. The following assumptions will be adopted in the
derivation of a closed-form solution for the elastically supported beam under the moving loads [9]:
(1) The vertical stiffness of each elastic bearing is K : The mass of the spring is negligible compared
with that of the bridge. (2) The train is modelled as a sequence of equally spaced moving loads,
with the inertial effect neglected. (3) For beams subjected to moving loads, which is basically a
transient problem with very short acting time, only the first mode of vibration of the bridge need
be considered, while the higher modes can be neglected without losing much accuracy [11]. (4) The
damping of the beam can be neglected, also due to the transient nature of the moving load
problem.
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2.1. Assumed modal shape of vibration

By the concept of modal superposition, the deflection uðx; tÞ of the elastically supported beam
can be expressed as

uðx; tÞ ¼
X

fnðxÞqnðtÞ; ð1Þ

where qnðtÞ denotes the generalized coordinate and fnðxÞ the shape function of the nth vibration
mode. As was stated above, only the first mode of vibration will be considered in analyzing the
vibrational response of the beam, as it is essentially a transient problem with very short acting
time [4,10]. If a mathematically exact approach is employed to find the first modal shape of
vibration for the elastically supported beam, the final form of the modal shape will be rather
complex, rendering it impossible to obtain simple closed-form solutions. As the first priority
herein is to derive a closed-form solution, by which the mechanism behind the key phenomena can
be interpreted, the vibration shape of the elastically supported beam will be approximated as the
superposition of the first modal shape of the flexural deflection of the beam with simple supports

and the first modal shape of a rigid beam supported by the elastic springs, as indicated in Fig. 1 [9],
that is,

fðxÞ ¼ sin
px

L
þ k; ð2Þ

where k ¼ ðEIp3Þ=ðKL3Þ denotes the ratio of the flexural rigidity EI of the beam to the stiffness K
of the elastic bearing, and L the length of the beam. As can be seen, a higher stiffness ratio k
means a softer elastic spring and a zero stiffness ratio means the special case of simple supports.
The shape function fðxÞ in Eq. (2) differs from that used in Ref. [9] by a factor 1=ð1þ kÞ; which is
acceptable, since shape functions do not have absolute magnitudes.

2.2. Elastically supported beam subjected to a single moving load

For an elastically supported beam subjected to a single moving load P of speed v; the equation
of motion for the deflection uðx; tÞ of the beam is

m .u þ EIu0000 ¼ Pdðx � vtÞ for 0pvtpL; ð3Þ
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Fig. 1. Model beam as a superposition of simple and rigid beams.
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where m is the mass per unit length and EI the flexural rigidity of the beam. The boundary
conditions are

EIu00ð0; tÞ ¼ 0; EIu00ðL; tÞ ¼ 0;

EIu000ð0; tÞ ¼ �Kuð0; tÞ; EIu000ðL; tÞ ¼ KuðL; tÞ:
ð4Þ

By multiplying both sides of Eq. (3) by the the shape function fðxÞ in Eq. (2) and integrating with
respect to the length L of the beam, one obtains

.q þ o2q ¼
2P

mL
1þ

8k
p

þ 2k2
� ��1

sin
pvt

L
þ k

� �
; ð5Þ

where the frequency of vibration o is

o ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ 4k

pþ 8kþ 2pk2

r
: ð6Þ

Here, o0 indicates the frequency of vibration of the associated beam with simple supports,

o0 ¼
p
L

� �2
ffiffiffiffiffiffi
EI

m

r
: ð7Þ

It has been demonstrated that the fundamental frequency o of vibration solved using the present
approximate shape function fðxÞ; as given in Eq. (6), appears to be in excellent agreement with the
exact one [9].
The generalized coordinate qðtÞ can be solved from Eq. (5), together with zero initial conditions,

as

qðtÞ ¼
2PL3

EIp4
1þ

4k
p

� ��1
sinOt � S sinot

1� S2

� �
þ kð1� cosotÞ

� 	
; ð8Þ

where O denotes the driving frequency implied by the moving load, and S is a speed parameter

defined as the ratio of the driving frequency O to the bridge frequency o;

O ¼
pv

L
; S ¼

O
o
¼

pv

oL
; ð9Þ

In Eq. (8), the term containing the stiffness ratio k represents the effect of the elastic supports. For
the special case of simple supports, i.e., with k ¼ 0; the present solution reduces to that given in
Ref. [4] for simply supported beams.
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Fig. 2. Elastically supported beam subjected to equidistant moving loads.
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2.3. Elastically supported beam subjected to a series of moving load

As shown in Fig. 2, consider now that the elastically supported beam is subjected to a series of
concentrated loads P of equal intervals d moving at speed v; to simulate the loading action of a
train that consists of N cars of length d: The equation of motion for the beam should now be
modified as

m .u þ EIu0000 ¼ P
XN

k¼1

d½x � vðt � tkÞ� 	 ½Hðt � tkÞ � Hðt � tk � DtÞ�; ð10Þ

where d denotes the Dirac delta function, H the unit step function, tk ¼ ðk � 1Þd=v the arriving
time of the kth load at the beam, Dt ¼ L=v; and N is the total number of moving loads. The term
Hðt � tkÞ indicates the arrival of the kth load at the beam and the term Hðt � tk � DtÞ the
departure from the beam. The boundary conditions given in Eq. (4) remain valid.
Based on the hypothesis of linear theories, the deflection of the beam induced by a sequence of

moving loads can be obtained as the superposition of the deflection of the beam induced by each
of the moving loads, if due account is taken of the time lag of each moving load. Consequently,
the generalized deflection qðtÞ of the beam for the present case can be obtained as a generalization
of Eq. (8) as

qðtÞ ¼
2PL3

EIp4
1þ

4k
p

� ��1

½Q1ðtÞ þ Q2ðtÞ�; ð11Þ

where Q1ðtÞ represents the contribution caused by the flexural vibration of the beam with simple
supports, and Q2ðtÞ the rigid displacement of the elastic bearings, namely,

Q1ðtÞ ¼
1

1� S2

XN

k¼1

f½sinOðt � tkÞ � S sinoðt � tkÞ�Hðt � tkÞ

þ ½sinOðt � tk � DtÞ � S sinoðt � tk � DtÞ�Hðt � tk � DtÞg; ð12aÞ

Q2ðtÞ ¼ k
XN

k¼1

f½1� cosoðt � tkÞ�Hðt � tkÞ

� ½1� cosoðt � tk � DtÞ�Hðt � tk � DtÞg; ð12bÞ

where O denotes the driving frequency implied by the moving loads and o the frequency of
vibration of the elastically supported beam. For the special case of k ¼ 0; the solution given in
Eq. (11) reduces to that given in Ref. [4] for a beam with simple supports.

3. Conditions of resonance and cancellation

The generalized deflection of the elastically supported beam given in Eq. (11) consists of two
parts, that is, the forced vibration caused by the moving loads when they are directly acting on the
beam, as indicated by the terms containing the driving frequency O; and the residual free vibration
caused by the moving loads that have passed the beam, as indicated by the terms containing the
bridge frequency o: When all the moving loads have passed the beam, the forced vibration part
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terminates immediately. However, the free vibration part, which is of sinusoidal form, continues
to exist until it is eventually damped out.
Both the phenomena of resonance and cancellation relate to the free vibrations induced by the

moving loads. When a moving load has passed the beam, waves of the sinusoidal form will be
induced on the beam. If the time lag of the wave components induced by each moving load equals
a multiple of the period 2p=o; then superposition of all the wave components will result in
amplified responses. This is the so-called phenomenon of resonance. On the contrary, if the time
lag equals an odd multiple of half of the period, the wave components induced by the sequentially
moving loads will just cancel out, indicating that the phenomenon of cancellation has occurred.
Whether the phenomena of resonance or cancellation will occur or not depends only on the free

vibration part of the motion. In order to interpret the two phenomena using the analytical
solution, let us consider the critical case when the (N21)st moving load has left the beam and the
Nth load has entered the beam, that is, when tNotptN þ Dt: Such a case is considered critical,
since the beam is excited to the utmost. From Eq. (11), one can obtain the following for such a
case:

qðtÞ ¼
2PL3

EIp4
1þ

4k
p

� ��1

½AðtÞHðt � tNÞ þ BðtÞHðt � tN � DtÞ�; ð13Þ

where the dynamic response factors AðtÞ and BðtÞ are

AðtÞ ¼
1

1� S2
½sinOðt � tNÞ � S sinoðt � tNÞ� þ k½1� cosoðt � tNÞ�; ð14aÞ

BðtÞ ¼
�2S

1� S2
cos

oL

2v
þ 2k sin

oL

2v

� �

� sino t �
L

2v

� �
þ

sinoðt � ðL=2vÞ � ðtN=2ÞÞsinoððtN=2Þ � ðd=2vÞÞ
sinðod=2vÞ

� 	
: ð14bÞ

In Eq. (13), the term AðtÞHðt � tNÞ indicates the forced vibration of the beam caused by the Nth
moving load, and the term BðtÞHðt � tN � DtÞ the sum of all the free vibrations caused by the
previous N21 moving loads that have already passed the beam.
Some physical interpretations can be given using Eq. (14b). First of all, if the denominator

within the brackets vanishes, i.e., when sinðod=2vÞ ¼ 0; the response of the beam reaches a peak.
By L’Hospital’s rule, the second term within the brackets of the dynamic response factor BðtÞ
under the resonance condition becomes

sino t � ðL=2vÞ � ðtN=2Þ

 �

sinoððtN=2Þ � ðd=2vÞÞ
sinðod=2vÞ

¼ ðN � 2Þsino t �
L

2v

� �
: ð15Þ

Accordingly, the dynamic response factor BðtÞ can be written as

BðtÞ ¼
�S

1� S2
cos

oL

2v
þ k sin

oL

2v

� �
� 2ðN � 1Þ sino t �

L

2v

� �
: ð16Þ

As can be seen, larger amplitude for the response can be expected as there are more loads passing
the beam, indicated by the term 2ðN21Þ: Such a phenomenon is similar to that observed for
beams with simple supports [4]. Corresponding to sinðod=2vÞ ¼ 0; the condition of resonance is
od=2v ¼ ip with i ¼ 1; 2; 3;y; or v ¼ od=ð2ipÞ; which can also be written in terms of the speed
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parameter S based on the definition of Eq. (9) as

Sr ¼
pv

oL
¼

1

2i

d

L
with i ¼ 1; 2; 3;y ð17Þ

which is the same as that for simply supported beams. As can be seen either from Eq. (17) or Fig.
3, the resonant speed parameter Sr is a function of the ratio d=L of the car length to the bridge
length. For trains of the commercially available models of which the car length d is known, the
resonant speed parameter Sr; which is dimensionless, is generally small for bridges of practical
length L: An observation from Eq. (17) is that the longer the span length L of a beam, the easier is
for the resonance phenomenon to occur. It is true that the resonant speed parameter Sr computed
from Eq. (17) is the same for both the elastically supported and simply supported beams.
However, because the fundamental frequency of the former is much lower than that of the latter,
the resonant speed, i.e., vr ¼ oLSr=p; for vehicles moving over an elastically supported beam will
be much lower than that over a simply supported beam. Besides, it should be noted that according
to Eq. (13), the amplitude of the resonance response also depends on the stiffness ratio k of the
elastic supports.
On the other hand, by setting the parenthesized term in Eq. (14b) equal to zero, all the residual

free vibrations caused by the previous N21 moving loads just cancel out. This is exactly the
condition of cancellation for the elastically supported beam:

Y ðSÞ ¼
�S

1� S2
cos

oL

2v
þ k sin

oL

2v
¼ 0: ð18Þ

For simply supported beams, k ¼ 0; the preceding condition reduces to cosðoL=2vÞ ¼ 0; or
oL=2v ¼ pð2i � 1Þ=2 with i ¼ 1; 2; 3;y; from which the speed parameter S can be determined as

Sc ¼
1

2i � 1
with i ¼ 1; 2; 3;y ð19Þ
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which is valid only for the simply supported beam, i.e., for the case with k ¼ 0: The cancellation
speed for the elastically supported beam cannot be presented explicitly, since Eq. (18) is an
implicit function. The solution computed from Y ðSÞ ¼ 0 in Eq. (18) for the cancellation speed
parameter Sc has been plotted with respect to the stiffness ratio k in Fig. 4. As can be seen, the
cancellation speed parameter Sc increases slightly as the stiffness ratio k increases. For example,
for the case with i ¼ 2; we have Sc=Scðk¼0ÞE1þ 0:5 k: However, since the fundamental frequency
o of the elastically supported beam also decreases as the stiffness ratio k increases, i.e.,
o=o0E1� 0:5 k: It turns out that the difference between the real cancellation speed vc; computed
as vc ¼ ScoL=p; for vehicles moving over an elastically supported beam and that over a beam
with simple supports is generally small.

4. Mechanism of resonance and cancellation

In design practice, the impact factor I is used to account for the dynamic amplification effect on
the bridge due to the passage of moving vehicles through increase of the design forces and stresses.
The impact factor I used in this study is defined as follows:

IðxÞ ¼
RdðxÞ � RsðxÞ

RsðxÞ
; ð20Þ

where RdðxÞ and RsðxÞ denote the maximum dynamic and static response, respectively, of the
bridge calculated at poison x due to the moving loads.
In order to unveil the mechanism underlying the phenomena of resonance and cancellation of

bridge responses in relation to the effect of elastic supports, two bridges, B1 and B2, will be
considered, of which the key properties have been listed in Table 1. The train is simulated as 8
moving loads of equal weight P ¼ 220 kN spaced at an interval d ¼ 25 m: By changing the vertical
stiffness of the elastic bearings, say, allowing it to vary in terms of the stiffness ratio k from 0 to
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0.4, and computing the impact factor I for the midpoint deflection of the beam due to the loads
moving at different speeds, one can establish the I2kFS plots as in Figs. 5 and 6 for the two
bridges.
As can be seen from Fig. 5, for bridge B1, higher stiffness ratios k generally result in higher

resonant peaks, indicating that the elastic bearings inserted at the bridge supports tend to amplify
the bridge response. Such a phenomenon can be clearly explained using Fig. 7, where two impact
curves were plotted each for k ¼ 0 (i.e., for the beam with simple supports) and k ¼ 0:2: As can be
seen from Fig. 7(a), the resonance phenomenon appears to be not so visible for the simply
supported beam for So0:1; which can be practically ignored. However, it is amplified drastically
and becomes rather significant and non-negligible due to installation of the elastic bearings on the
bridge. In the design of high speed railway bridges, the detrimental effect of elastic bearings in
amplifying the low-speed resonant responses should be seriously taken into consideration.
On the other hand, a comparison of Fig. 7(a) with (b) reveals two interesting facts. First, the

real resonant speed vr for an elastically supported bridge is actually much smaller than that for
the bridge with simple supports (see Fig. 7(b)), although the resonant speed parameter Sr remains
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Table 1

Properties of the bridges used in analysis

L (m) M (t/m) EI (kNm2) o0 (rad/s)

B1 Bridge 23 30 1.4� 108 40.3

B2 Bridge 27 32 2.0� 108 33.9

Fig. 5. I � k� S plot and contour map (Bridge B1).
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the same for both (see Fig. 7(a)). Second, the real cancellation speed vc seems to be close for both
the elastically and simply supported bridges (see Fig. 7(b)), although the corresponding speed
parameter Sc is slightly larger for the elastically supported bridge (see Fig. 7(a)). Such findings are
consistent with the statements made following Eq. (19). In studying the impact response on
bridges, the results are often presented as an I2S plot for its elegance in expression and
convenience in extension to more general cases, as both I and S are non-dimensional. However,
we should not misinterpret the real physical meanings implied by these non-dimensional
parameters.
As can be seen from Fig. 6, for the speed parameter in the range So0:11; larger resonant peaks

can be expected for bridge B2 for larger stiffness ratio k: However, the same is not true for the
speed parameter in the range S > 0:11: The reason can be given as follows. First, for bridge B2, the
car/bridge length ratio is d=L ¼ 25=27 ¼ 0:926: By drawing a vertical line at d=L ¼ 0:926; one can
obtain from the resonance plot (i.e., Fig. 3) several intersections of which the ordinates (for Sr)
represent the points of resonance, as indicated in Fig. 8(a). Because the resonance condition in
terms of speed parameter is independent of the stiffness ratio k; one can draw a resonance plot as
shown in Fig. 8(b) for bridge B2, in which each horizontal line represents one of the ordinates for
resonance (i.e., passes through one of the intersections) shown in Fig. 8(a). Finally, we can
superimpose the resonance plot of Fig. 8(b) with the cancellation plot of Fig. 4 to obtain the
resonance/cancellation plot as shown in Fig. 8(c), which contains all the information we need for
explaining the dynamic response of bridge B2.
Take the resonance line S ¼ 0:23 in the resonance/cancellation plot, i.e., Fig. 8(c), for example.

The cancellation line below becomes closer to this line as the stiffness ratio k increases, which
means that the resonance peaks will be suppressed as the stiffness ratio k increases. Here, it should
be added that cancellation is a condition more decisive than resonance, since the dynamic response
factor BðtÞ remains equal to zero once the condition of cancellation is met, regardless of the
presence of resonance, as can be observed from Eq. (14b). For the same reason, we can explain
why the resonant peak at S ¼ 0:11 first diminishes and then grows as the stiffness ratio k
increases. This is due to the fact that the resonance and cancellation lines are close in the
beginning, but are getting apart for increasing k: After realizing the mechanism of cancellation
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and resonance for elastically supported bridges, we shall proceed to verify the present theory by
some field measurements.

5. Field measurement of railway bridges

There have been reports by train drivers on the unusually high levels of oscillations when
maneuvering the trains to traverse the bridges over the Fongshan Creek on the Western Railway
Lines in northern Taiwan. In order to clarify the reasons behind the problem, a field measurement
was carried out for two adjacent bridges, A1 and A2, located at the Fongshan Creek, which were
not known to be elastically supported at the time of testing. Two locomotives of type E300 (see
Fig. 9) linked back-to-back together were used to generate the action of moving loads at different
speeds. Some typical dimensions of the bridges and locomotives were shown in Fig. 10. Each
locomotive has a bogie-to-bogie distance of 9.6m and a gross weight of 96 t, much heavier than
the normal passenger cars used. The railway gauge is 1067mm, which is typical in Taiwan. The
fundamental frequencies of the two bridges measured from an ambient vibration test are:
f ¼ 5:17Hz for bridge A1 and f ¼ 5:13Hz for bridge A2, which represent the combined dynamic
effect of all the components constituting the railway bridge, including the continuous rails,
sleepers, ballast, elastic bearings, and the girder and two side flanges that form a cross-section of
the U shape. By design, the two bridges are identically the same, but due to degradation in
material properties they turn out to be slightly different in the material properties.
During the testing, the two locomotives connected back-to-back are allowed to travel on one

side, i.e., the test side, of the two-track railway lines including the bridge sections at the following
speeds: 15, 30, 45, 60, 75, 85, and 110 km/h. The maximum accelerations measured at the
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Fig. 9. E300 Locomotive (unit: mm).

Fig. 10. Schematic of tested bridges.
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midpoint of the A1 and A2 bridges using seismometers during the passage of the two locomotives
at different speeds have been plotted in Fig. 11. Also plotted in Fig. 11 are the maximum
accelerations computed for the midpoint of the two bridges by simulating the two locomotives as
four equal-weight moving loads, but with simple support conditions, using the computer program
developed by the research group for vehicle–bridge interactions at the National Taiwan
University.
One observation from the measured and computed results shown in Fig. 11 is that they both

show the occurrence of a peak response at the speed around 60 km/h. Such a speed is exactly one
of the resonance speeds, which can be verified using Eq. (17), that is,

Bridge A1 : vr ¼
od

2np
¼

fd

n

���� f ¼ 5:17

d ¼ 9:6

n ¼ 3

¼ 16:55 m=s ¼ 59:6 km=h;

Bridge A2 : vr ¼
od

2np
¼

fd

n

���� f ¼ 5:13

d ¼ 9:6

n ¼ 3

¼ 16:42 m=s ¼ 59:1 km=h:

However, the computed response in Fig. 11 appears to be much smaller than the measured ones
for the two bridges, while the peak response around the speed of 60 km/h is not quite visible. This
is primarily due to the adoption of simple supports for the bridges in the finite element analysis.
We assumed the bridges to be simply supported because we were not informed of the existence of
elastic bearings between the bridge girders and column tops. Nevertheless, the relatively high
amplitudes of the measured responses for both bridges, compared with the computed one, did
reveal the interesting fact that significant magnification may be introduced by existence of elastic
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bearings, which was latter known to us. The magnification effect of elastic bearings seems to have
received little attention from researchers working on railway bridges in the past.
Based on the static deflection tests under the locomotive loads, which were conducted as part of

the preliminary tests, the spring constants measured for the A1 and A2 bridges are
K1 ¼ 3:5� 106 kN/m and K2 ¼ 8� 106 kN/m, respectively, assuming that the elastic bearings
installed at the two ends of a bridge are the same. All the key properties identified for the tested
bridges, including the flexural rigidity EI and stiffness ratio k; are listed in Table 2. With the data
given in Table 2, the midpoint responses computed by the finite element program for the A1 and
A2 bridges using the moving loads assumption were plotted in Fig. 12. As can be seen, because of
the inclusion of elastic bearings, the computed responses agree generally well with the measured
ones for the two bridges. Moreover, larger response exists for bridge A1 simply because it has
softer support bearings.
Let us now turn to the phenomenon of cancellation. From Eq. (19), for the case with simple

supports, the speed parameter S for cancellation to occur is

Sc ¼
1

2i � 1

����
i¼8

¼ 0:067:
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Table 2

Properties of tested bridges

L (m) f (Hz) K (kNm) EI (kNm2) k ¼ ðEIp3Þ=ðKL3Þ

A1 Bridge 31.3 5.17 3.5� 106 2.40� 108 0.069

A2 Bridge 31.3 5.13 8� 106 2.44� 108 0.031
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Fig. 12. Computed solutions for elastic supports.
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Correspondingly, the cancellation speeds for the two bridges are

Bridge A1 : vc ¼
o0LSc

p
¼ 2fLSc

¼ 2� 5:17� 31:3� 0:067 ¼ 21:68 m=s ¼ 78 km=h;

Bridge A2 : vc ¼
o0LSc

p
¼ 2fLSc ¼ 2� 5:13� 31:3� 0:067

¼ 21:51 m=s ¼ 77:5 km=hC78 km=h:

This is exactly the cancellation speed for the bridge with simple supports, as can be seen from the
numerical solution shown in Fig. 11.
To consider the effect of elastic bearings, the speed parameter S for the cancellation to occur

can be solved from Eq. (18) or

Y ðSÞ ¼
�Sc

1� S2
c

cos
p
2Sc

þ k sin
p
2Sc

¼ 0: ð21Þ

By substituting the stiffness ratios k of 0.063, 0.031, as given in Table 2, into the preceding
equation, the speed parameter S solved for the A1 and A2 bridges respectively are 0.069 and
0.068. Correspondingly, the cancellation speeds v for the two bridges as

Bridge A1 : vc ¼ 0:069� 2fL ¼ 0:069� 2� 5:17� 31:3 ¼ 22:3 m=s ¼ 80:4 km=h;

Bridge A2 : vc ¼ 0:068� 2fL ¼ 0:068� 2� 5:13� 31:3 ¼ 21:8 m=s ¼ 78:5 km=h:

Clearly, the above (computed) speeds are consistent with the (measured) speeds for the occurrence
of minimal responses for the two bridges, as shown in Fig. 12, which is an indication of the
reliability of the present theory.

6. Concluding remarks

In this paper, the mechanisms underlying the resonance and cancellation phenomena of
elastically supported bridges caused by a sequence of equidistant moving loads have been
analytically studied. A field measurement on two adjacent bridges travelled by two back-to-back
connected locomotives was also conducted to confirm the phenomena of resonance and
cancellation identified. The conclusions drawn from this study are: (1) The resonance condition in
terms of the speed parameter S is the same for the beam with both the elastic and simple supports.
Since an elastically supported beam has a lower frequency of vibration, it therefore has a lower
resonant speed v; meaning that it can be more easily excited than a beam with simple supports. (2)
The speed parameter for the cancellation condition to occur increases slightly as the stiffness ratio
increases. However, since the frequency of vibration is slightly smaller for an elastically supported
beam, it turns out that the real cancellation speed for an elastically supported beam remains close
to that for the simply supported beam. (3) Whenever the cancellation speed comes close to or
coincides with the resonance speed, the phenomenon of resonance will be suppressed, meaning
that the cancellation condition is more decisive than the resonance condition. (4) Once a
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resonance condition is reached for an elastically supported beam, much larger peak responses will
be induced on the beam, compared with those of the simply supported beam.
There is no doubt that elastic bearings are effective devices for isolating the earthquake forces

transmitted from the ground to the superstructure. However, the installation of these devices can
also prevent the transmission or dissipation of vehicle-induced forces from the superstructure to
the ground. Thus, the huge amount of vibration energy brought by a train may be accumulated
and amplified on the bridge during its passage. Such a fact should not be overlooked in the design
of railway bridges, especially those to be travelled by high-speed trains, since it is harmful not only
for the riding comfort of passing trains, but also for the maintenance of track structures, as the
repetitive occurrence of high-amplitude resonant peaks may cause fatigue problems on related
components.
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